Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription.

نویسندگان

  • H J Larsen
  • P E Nielsen
چکیده

Peptide nucleic acid (PNA) forms sequence-specific (PNA)2/DNA triplexes with one strand of double-stranded DNA by strand invasion. When formed with the template strand of DNA such a (PNA)2/DNA triplex can arrest transcription elongation in vitro and can thus act as an anti-gene agent. One of the major obstacles to applying PNA as an anti-gene agent in vivo is that PNA strand invasion occurs at a very slow rate under moderate salt conditions. In the present study we show that transcription can increase the rate of sequence-specific PNA binding dramatically. Such transcription-mediated PNA binding occurs three times as efficiently when the PNA target is situated on the non- template strand as compared with the template strand. Since transcription can mediate template strand-associated (PNA)2/DNA complexes which arrest further elongation, the action of RNA polymerase results in repression of its own activity, i.e. suicide transcription. These findings are highly relevant for the possible future use of PNA as an anti-gene agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites.

Peptide nucleic acids (PNAs) are DNA-mimicking molecules in which the sugar-phosphate backbone is replaced by a pseudopeptide backbone composed of N-(2-aminoethyl)glycine units. We determined whether double-stranded molecules based on PNAs and PNA-DNA-PNA (PDP) chimeras could be capable of stable interactions with nuclear proteins belonging to the Sp1 transcription factor family and, therefore,...

متن کامل

Peptide nucleic acid (PNA) binding-mediated induction of human gamma- globin gene expression

Peptide nucleic acids (PNAs) can bind to homopurine/homopyrimidine sequences of double-stranded DNA targets in a sequence-specific manner and form [PNA]2/DNA triplexes with single-stranded DNA D-loop structures at the PNA binding sites. These D-loop structures have been found to have a capacity to initiate transcription in vitro. If this strategy can be used to induce transcription of endogenou...

متن کامل

Peptide nucleic acid (PNA) binding-mediated induction of human γ-globin gene expression

Peptide nucleic acids (PNAs) can bind to homopurine/ homopyrimidine sequences of double-stranded DNA targets in a sequence-specific manner and form [PNA]2/DNA triplexes with single-stranded DNA D-loop structures at the PNA binding sites. These D-loop structures have been found to have a capacity to initiate transcription in vitro. If this strategy can be used to induce transcription of endogeno...

متن کامل

Structural diversity of target-specific homopyrimidine peptide nucleic acid–dsDNA complexes

Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine-cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-s...

متن کامل

Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide without requiring denaturation.

Sequence-specific detection of double stranded DNA (dsDNA) is important in various research fields. In general, denaturation of dsDNA into single strands is necessary for the sequence-specific recognition of probes to target DNA, posing several drawbacks which decrease the efficiency as a DNA sensor. Herein, we report a direct, sequence-specific dsDNA detection system without requiring any ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 1996